login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367527
The number of ways of tiling the n X n grid up to diagonal and antidiagonal reflections by a tile that is fixed under diagonal reflection, but not antidiagonal reflection.
4
1, 7, 144, 16704, 8396800, 17180459008, 140737555464192, 4611686036680998912, 604462909816110680375296, 316912650057066639048407252992, 664613997892457954898647603849723904, 5575186299632655785460668023508722111217664, 187072209578355573530072277557703869206096815063040
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-6, A-9.
FORMULA
a(2m-1) = 2^(2m^2 - 4m - 2)*(2^(1 + 2 m^2) + 8^m).
a(2m) = 4^(m^2 - 1)*(1 + 2^m + 4^m^2).
MATHEMATICA
Table[{2^(2 m^2 - 4 m - 2) (2^(1 + 2 m^2) + 8^m), 4^(m^2 - 1) (1 + 2^m + 4^m^2)}, {m, 1, 5}] // Flatten
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Dec 10 2023
STATUS
approved