login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of ways of tiling the n X n grid up to diagonal and antidiagonal reflections by a tile that is fixed under diagonal reflection, but not antidiagonal reflection.
4

%I #26 Jul 06 2024 10:19:56

%S 1,7,144,16704,8396800,17180459008,140737555464192,

%T 4611686036680998912,604462909816110680375296,

%U 316912650057066639048407252992,664613997892457954898647603849723904,5575186299632655785460668023508722111217664,187072209578355573530072277557703869206096815063040

%N The number of ways of tiling the n X n grid up to diagonal and antidiagonal reflections by a tile that is fixed under diagonal reflection, but not antidiagonal reflection.

%H Peter Kagey, <a href="/A367527/a367527_1.pdf">Illustration of a(2)=7</a>

%H Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv: 2311.13072 [math.CO], 2023. See also <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Kagey/kagey6.html">J. Int. Seq.</a>, (2024) Vol. 27, Art. No. 24.6.1, pp. A-6, A-9.

%F a(2m-1) = 2^(2m^2 - 4m - 2)*(2^(1 + 2 m^2) + 8^m).

%F a(2m) = 4^(m^2 - 1)*(1 + 2^m + 4^m^2).

%t Table[{2^(2 m^2 - 4 m - 2) (2^(1 + 2 m^2) + 8^m), 4^(m^2 - 1) (1 + 2^m + 4^m^2)}, {m, 1, 5}] // Flatten

%Y Cf. A302484, A367526, A367528, A367529.

%K nonn

%O 1,2

%A _Peter Kagey_, Dec 10 2023