login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101152
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+569)^2 = y^2.
6
0, 111, 1260, 1707, 2280, 8791, 11380, 14707, 52624, 67711, 87100, 308091, 396024, 509031, 1797060, 2309571, 2968224, 10475407, 13462540, 17301451, 61056520, 78466807, 100841620, 355864851, 457339440, 587749407, 2074133724, 2665570971
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+569, y).
Corresponding values y of solutions (x, y) are in A160090.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (587+102*sqrt(2))/569 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (617139+371510*sqrt(2))/569^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) - a(n-6) + 1138 for n > 6; a(1)=0, a(2)=111, a(3)=1260, a(4)=1707, a(5)=2280, a(6)=8791.
G.f.: x*(111 +1149*x +447*x^2 -93*x^3 -383*x^4 -93*x^5)/((1-x)*(1-6*x^3 +x^6)).
a(3*k+1) = 569*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 111, 1260, 1707, 2280, 8791, 11380}, 50] (* G. C. Greubel, Apr 21 2018 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1138*n+323761), print1(n, ", ")))}
(PARI) x='x+O('x^30); concat([0], Vec(x*(111 +1149*x +447*x^2 -93*x^3 -383*x^4 -93*x^5)/((1-x)*(1-6*x^3 +x^6)))) \\ G. C. Greubel, Apr 21 2018
(Magma) I:=[0, 111, 1260, 1707, 2280, 8791, 11380]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 21 2018
CROSSREFS
Cf. A160090, A129298, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A160091 (decimal expansion of (587+102*sqrt(2))/569), A160092 (decimal expansion of (617139+371510*sqrt(2))/569^2).
Sequence in context: A302475 A303256 A137465 * A250145 A075859 A264466
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 03 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, May 04 2009
STATUS
approved