login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160090
Positive numbers y such that y^2 is of the form x^2 + (x + 569)^2 with integer x.
4
485, 569, 689, 2221, 2845, 3649, 12841, 16501, 21205, 74825, 96161, 123581, 436109, 560465, 720281, 2541829, 3266629, 4198105, 14814865, 19039309, 24468349, 86347361, 110969225, 142611989, 503269301, 646776041, 831203585, 2933268445
OFFSET
1,1
COMMENTS
(-93, a(1)) and (A101152(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+569)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (587+102*sqrt(2))/569 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (617139+371510*sqrt(2))/569^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=485, a(2)=569, a(3)=689, a(4)=2221, a(5)=2845, a(6)=3649.
G.f.: (1-x)*(485 +1054*x +1743*x^2 +1054*x^3 +485*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 569*A001653(k) for k >= 1.
EXAMPLE
(-93, a(1)) = (-93, 485) is a solution: (-93)^2+(-93+569)^2 = 8649+226576 = 235225 = 485^2.
(A101152(1), a(2)) = (0, 569) is a solution: 0^2+(0+569)^2 = 323761= 569^2.
(A101152(3), a(4)) = (1260, 2221) is a solution: 1260^2+(1260+569)^2 = 1587600+3345241 = 4932841 = 2221^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {485, 569, 689, 2221, 2845, 3649}, 50] (* G. C. Greubel, Apr 21 2018 *)
PROG
(PARI) {forstep(n=-96, 10000000, [3, 1], if(issquare(2*n^2+1138*n+323761, &k), print1(k, ", ")))}
(PARI) x='x+O('x^30); Vec((1-x)*(485 +1054*x +1743*x^2 +1054*x^3 +485*x^4)/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
(Magma) I:=[485, 569, 689, 2221, 2845, 3649]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
CROSSREFS
Cf. A101152, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160091 (decimal expansion of (587+102*sqrt(2))/569), A160092 (decimal expansion of (617139+371510*sqrt(2))/569^2).
Sequence in context: A013771 A114774 A013903 * A158326 A031722 A156774
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 04 2009
STATUS
approved