login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160089 The maximum of the absolute value of the coefficients of Pn = (1-x)(1-x^2)(1-x^3)...(1-x^n). 4
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 19, 21, 28, 29, 34, 41, 50, 56, 68, 80, 100, 114, 135, 158, 196, 225, 269, 320, 388, 455, 544, 644, 786, 921, 1111, 1321, 1600, 1891, 2274, 2711, 3280, 3895, 4694, 5591, 6780, 8051, 9729, 11624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

If n is even then a(n) is the absolute value of the coefficient of z^(n(n+1)/4). If n is odd, it is an open question as to which coefficient is a(n).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms n = 1..100 from Theodore Kolokolnikov, terms n = 101..1000 from Alois P. Heinz)

Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]

FORMULA

a(n) >= A086376(n). - R. J. Mathar, Jun 01 2011

From Vaclav Kotesovec, May 04 2018: (Start)

a(n)^(1/n) tends to 1.2197...

Conjecture: a(n)^(1/n) ~ sqrt(A133871(n)^(1/n)) ~ 1.21971547612163368901359933...

(End)

MAPLE

A160089 := proc(n)

        g := expand(mul( 1-x^k, k=1..n) );

        convert(PolynomialTools[CoefficientVector](g, x), list):

        max(op(map(abs, %)));

end proc:

MATHEMATICA

p = 1; Flatten[{1, Table[p = Expand[p*(1 - x^n)]; Max[Abs[CoefficientList[p, x]]], {n, 1, 100}]}] (* Vaclav Kotesovec, May 03 2018 *)

CROSSREFS

Cf. A025591, A063866, A069918, A133871.

Sequence in context: A185278 A241065 A086376 * A259358 A290086 A129363

Adjacent sequences:  A160086 A160087 A160088 * A160090 A160091 A160092

KEYWORD

nonn

AUTHOR

Theodore Kolokolnikov, May 01 2009

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Apr 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 01:20 EST 2018. Contains 317279 sequences. (Running on oeis4.)