|
|
A025591
|
|
Maximal coefficient of Product_{k<=n} (1 + x^k). Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0 or 1.
|
|
39
|
|
|
1, 1, 1, 2, 2, 3, 5, 8, 14, 23, 40, 70, 124, 221, 397, 722, 1314, 2410, 4441, 8220, 15272, 28460, 53222, 99820, 187692, 353743, 668273, 1265204, 2399784, 4559828, 8679280, 16547220, 31592878, 60400688, 115633260, 221653776, 425363952, 817175698
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
If k is allowed to approach infinity, this gives the partition numbers A000009.
a(n) is the maximal number of subsets of {1,2,...,n} that share the same sum.
|
|
LINKS
|
T. D. Noe, Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 0..3339 (terms < 10^1000, first 201 terms from T. D. Noe, next 200 terms from Alois P. Heinz)
E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), Article 00.2.5.
|
|
FORMULA
|
a(n) ~ sqrt(6/Pi) * 2^n / n^(3/2) [conjectured by Andrica and Tomescu (2002) and proved by Sullivan (2013)]. - Vaclav Kotesovec, Mar 17 2020
More precise asymptotics: a(n) ~ sqrt(6/Pi) * 2^n / n^(3/2) * (1 - 6/(5*n) + 589/(560*n^2) - 39/(50*n^3) + ...). - Vaclav Kotesovec, Dec 30 2022
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> b(0, n)+b(1, n):
|
|
MATHEMATICA
|
f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[n-1, s-n]+f[n-1, s+n]]; Table[Which[Mod[n, 4]==0||Mod[n, 4]==3, f[n, 0], Mod[n, 4]==1||Mod[n, 4]==2, f[n, 1]], {n, 0, 40}]
(* Second program: *)
p = 1; Flatten[{1, Table[p = Expand[p*(1 + x^n)]; Max[CoefficientList[p, x]], {n, 1, 50}]}] (* Vaclav Kotesovec, May 04 2018 *)
b[n_, i_] := b[n, i] = If[n > i(i+1)/2, 0, If[i == 0, 1, b[n+i, i-1] + b[Abs[n-i], i-1]]];
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, polcoeff(prod(k=1, n, 1+x^k), n*(n+1)\4))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|