login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156774
a(n) = 6561*n^2 - 3564*n + 485.
3
485, 3482, 19601, 48842, 91205, 146690, 215297, 297026, 391877, 499850, 620945, 755162, 902501, 1062962, 1236545, 1423250, 1623077, 1836026, 2062097, 2301290, 2553605, 2819042, 3097601, 3389282, 3694085, 4012010, 4343057, 4687226
OFFSET
0,1
COMMENTS
The identity (6561*n^2 - 3564*n + 485)^2 - (81*n^2 - 44*n + 6)*(729*n - 198)^2 = 1 can be written as a(n)^2 - A156676(n)*A156772(n)^2 = 1 for n>0.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (485 + 2027*x + 10610*x^2)/(1-x)^3.
E.g.f.: (485 + 2997*x + 6561*x^2)*exp(x). - G. C. Greubel, Jun 21 2021
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {485, 3482, 19601}, 40]
Table[6561n^2-3564n+485, {n, 0, 30}] (* Harvey P. Dale, Dec 09 2020 *)
PROG
(Magma) I:=[485, 3482, 19601]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)= 6561*n^2-3564*n+485 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [485 -3564*n +6561*n^2 for n in (0..40)] # G. C. Greubel, Jun 21 2021
CROSSREFS
Sequence in context: A160090 A158326 A031722 * A031632 A097767 A031520
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved