login
A294712
Numbers that are the sum of three squares (square 0 allowed) in exactly nine ways.
2
425, 521, 545, 569, 614, 650, 701, 725, 729, 774, 809, 810, 845, 857, 953, 974, 989, 990, 1053, 1062, 1070, 1074, 1091, 1118, 1134, 1139, 1166, 1179, 1217, 1249, 1251, 1262, 1266, 1277, 1298, 1310, 1418, 1446, 1458, 1470, 1525, 1541, 1546, 1571, 1594, 1611
OFFSET
1,1
COMMENTS
These are the numbers for which A000164(a(n)) = 9.
a(n) is the n-th largest number which has a representation as a sum of three integer squares (square 0 allowed), in exactly nine ways, if neither the order of terms nor the signs of the numbers to be squared are taken into account. The multiplicity of a(n) with order and signs taken into account is A005875(a(n)).
This sequence is a proper subsequence of A000378.
LINKS
EXAMPLE
545 = 8^2 + 15^2 + 16^2
= 0^2 + 16^2 + 17^2
= 10^2 + 11^2 + 18^2
= 5^2 + 14^2 + 18^2
= 8^2 + 9^2 + 20^2
= 1^2 + 12^2 + 20^2
= 2^2 + 10^2 + 21^2
= 5^2 + 6^2 + 22^2
= 0^2 + 4^2 + 23^2. - Robert Israel, Nov 08 2017
MAPLE
N:= 10000: # to get all terms <= N
V:= Array(0..N):
for i from 0 to isqrt(N) do
for j from 0 to i while i^2 + j^2 <= N do
for k from 0 to j while i^2 + j^2 + k^2 <= N do
t:= i^2 + j^2 + k^2;
V[t]:= V[t]+1;
od od od:
select(t -> V[t] = 9, [$1..N]); # Robert Israel, Nov 08 2017
MATHEMATICA
Select[Range[0, 1000], Length[PowersRepresentations[#, 3, 2]] == 9 &]
KEYWORD
nonn
AUTHOR
Robert Price, Nov 07 2017
EXTENSIONS
Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019
STATUS
approved