OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 5.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From Colin Barker, Nov 10 2017: (Start)
G.f.: (1 - 5*x + 11*x^2 - 11*x^3 + 10*x^4 + 2*x^5) / (1 - x)^6.
a(n) = (1/60)*(60 + 16*n - 65*n^2 + 70*n^3 - 25*n^4 + 4*n^5).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
MAPLE
cn := [1, -5, 11, -11, 10, 2] ;
p := add(cn[i]*x^(i-1), i=1..nops(cn)) ;
q := (1-x)^6 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ;
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 1, 2, 6, 21, 69}, 40] (* Harvey P. Dale, Feb 26 2023 *)
PROG
(PARI) Vec((1 - 5*x + 11*x^2 - 11*x^3 + 10*x^4 + 2*x^5) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Nov 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 07 2017
STATUS
approved