login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294708
Number of permutations of [n] avoiding {4231, 2143, 1234}.
1
1, 1, 2, 6, 21, 69, 190, 446, 927, 1745, 3036, 4960, 7701, 11467, 16490, 23026, 31355, 41781, 54632, 70260, 89041, 111375, 137686, 168422, 204055, 245081, 292020, 345416, 405837, 473875, 550146, 635290, 729971, 834877, 950720, 1078236, 1218185, 1371351, 1538542, 1720590
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 4.
FORMULA
From Colin Barker, Nov 10 2017: (Start)
G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + 6*x^4 + 8*x^5 + 4*x^6 + 4*x^7 + 6*x^8 - 6*x^9 + 2*x^10) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>10.
a(n) = (1/6)*(786 - 787*n + 333*n^2 - 68*n^3 + 6*n^4) for n>5.
(End)
MAPLE
cn := [1, -4, 7, -4, 6, 8, 4, 4, 6, -6, 2] ;
p := add(cn[i]*x^(i-1), i=1..nops(cn)) ;
q := (1-x)^5 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - 4*x + 7*x^2 - 4*x^3 + 6*x^4 + 8*x^5 + 4*x^6 + 4*x^7 + 6*x^8 - 6*x^9 + 2*x^10) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Nov 10 2017
CROSSREFS
Sequence in context: A294706 A294707 A116842 * A294709 A116774 A116756
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 07 2017
STATUS
approved