login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294705
Order of the general symplectic group of 4 X 4 matrices over Z_n.
1
1, 720, 103680, 1474560, 37440000, 74649600, 1659571200, 3019898880, 18366600960, 26956800000, 257213088000, 152882380800, 1644455554560, 1194891264000, 3881779200000, 6184752906240, 32143905423360, 13223952691200, 110052644025600, 55207526400000, 172064342016000, 185193423360000
OFFSET
1,2
COMMENTS
Let M be any fixed nonsingular skew-symmetric 4 X 4 matrix over the integers mod n. Then a(n) is the number of invertible 4 X 4 matrices A over the integers mod n such that A^T * M * A = c*M for some nonzero constant c (mod n), where A^T denotes the transpose of A.
LINKS
Hanson Smith, Frobenius finds non-monogenic division fields of abelian varieties, Int. J. Number Theory 18 (2022), no. 10, 2299-2315.
FORMULA
a(n) = Product_{primes p dividing n} p^(11*v_p(n) - 7)*(p - 1)*(p^2 - 1)*(p^4 - 1), where v_p(n) is the largest power k such that p^k divides n.
Sum_{k=1..n} a(k) ~ c * n^12 / 12, where c = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6 + 1/p^7 - 1/p^8) = 0.5251079212... . - Amiram Eldar, Aug 07 2023
MATHEMATICA
f[p_, e_] := p^(11*e - 7)*(p - 1)*(p^2 - 1)*(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Aug 07 2023 *)
PROG
(Sage)
def a(n):
return product([p^(11*n.valuation(p) - 7)*(p - 1)*(p^2 - 1)*(p^4 - 1)
for p in n.prime_factors()])
CROSSREFS
Cf. A305186.
Sequence in context: A364771 A003931 A158049 * A222004 A047803 A166765
KEYWORD
nonn,mult
AUTHOR
Robin Visser, Aug 06 2023
STATUS
approved