login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294704
Expansion of Product_{k>=1} (1 - k^k*x^k)^(k^k).
4
1, -1, -16, -713, -64711, -9688521, -2165724176, -675843638952, -280752881225790, -149800127712465769, -99844730464906330029, -81300082264515781043363, -79413710307214816810372248, -91652445696245266803423194130
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294773(k)*a(n-k) for n > 0.
a(n) ~ -n^(2*n). - Vaclav Kotesovec, Nov 09 2017
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[(1 - k^k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^k^k))
CROSSREFS
Column k=1 of A294699.
Sequence in context: A123824 A198283 A283534 * A264114 A356482 A201622
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 07 2017
STATUS
approved