OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 (2017), Table 1 No 30.
Index entries for linear recurrences with constant coefficients, signature (7,-19,25,-16,4).
FORMULA
O.g.f.: (1 - 6*x + 14*x^2 - 14*x^3 + 8*x^4 - 2*x^6)/((1 - x)^3*(1 - 2*x)^2).
a(n) = (28 - 32*2^n + 22*n + 7*2^n*n + 2*n^2)/4 for n>1. - Bruno Berselli, Nov 07 2017
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5) for n>4. - Colin Barker, Nov 10 2017
MAPLE
p := 1-6*x+14*x^2-14*x^3+8*x^4-2*x^6 ;
q := (1-x)^3*(1-2*x)^2 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - 6*x + 14*x^2 - 14*x^3 + 8*x^4 - 2*x^6)/((1 - x)^3*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 07 2017
STATUS
approved