OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 29.
Index entries for linear recurrences with constant coefficients, signature (9,-34,70,-85,61,-24,4).
FORMULA
G.f.: (1 - 8*x + 27*x^2 - 48*x^3 + 50*x^4 - 30*x^5 + 6*x^6) / ((1 - x)^5*(1 - 2*x)^2).
From Colin Barker, Nov 10 2017: (Start)
a(n) = (1/12)*(12 + 4*(3*2^n-4)*n - 5*n^2 - 2*n^3 - n^4).
a(n) = 9*a(n-1) - 34*a(n-2) + 70*a(n-3) - 85*a(n-4) + 61*a(n-5) - 24*a(n-6) + 4*a(n-7) for n>6.
(End)
MAPLE
p := 1-8*x+27*x^2-48*x^3+50*x^4-30*x^5+6*x^6 ;
q := (1-x)^5*(1-2*x)^2 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ;
MATHEMATICA
LinearRecurrence[{9, -34, 70, -85, 61, -24, 4}, {1, 1, 2, 6, 21, 71, 218}, 40] (* Harvey P. Dale, Mar 18 2024 *)
PROG
(PARI) Vec((1 - 8*x + 27*x^2 - 48*x^3 + 50*x^4 - 30*x^5 + 6*x^6) / ((1 - x)^5*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 07 2017
STATUS
approved