login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294700
Number of permutations of [n] avoiding {1324, 2143, 3421}.
1
1, 1, 2, 6, 21, 71, 218, 610, 1585, 3895, 9186, 21022, 47061, 103663, 225618, 486626, 1042305, 2220303, 4708714, 9949294, 20956661, 44022231, 92253162, 192912386, 402622961, 838825351, 1744789138, 3623830750, 7516137525, 15569193055, 32212182306, 66571910722
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 1 No 29.
FORMULA
G.f.: (1 - 8*x + 27*x^2 - 48*x^3 + 50*x^4 - 30*x^5 + 6*x^6) / ((1 - x)^5*(1 - 2*x)^2).
From Colin Barker, Nov 10 2017: (Start)
a(n) = (1/12)*(12 + 4*(3*2^n-4)*n - 5*n^2 - 2*n^3 - n^4).
a(n) = 9*a(n-1) - 34*a(n-2) + 70*a(n-3) - 85*a(n-4) + 61*a(n-5) - 24*a(n-6) + 4*a(n-7) for n>6.
(End)
MAPLE
p := 1-8*x+27*x^2-48*x^3+50*x^4-30*x^5+6*x^6 ;
q := (1-x)^5*(1-2*x)^2 ;
taylor(p/q, x=0, 40) ;
gfun[seriestolist](%) ;
MATHEMATICA
LinearRecurrence[{9, -34, 70, -85, 61, -24, 4}, {1, 1, 2, 6, 21, 71, 218}, 40] (* Harvey P. Dale, Mar 18 2024 *)
PROG
(PARI) Vec((1 - 8*x + 27*x^2 - 48*x^3 + 50*x^4 - 30*x^5 + 6*x^6) / ((1 - x)^5*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 10 2017
CROSSREFS
Sequence in context: A116833 A116808 A294726 * A294701 A116749 A116792
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 07 2017
STATUS
approved