login
A294699
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j^(k*j)*x^j)^j(k*j) in powers of x.
3
1, 1, -1, 1, -1, -1, 1, -1, -16, 0, 1, -1, -256, -713, 0, 1, -1, -4096, -531185, -64711, 1, 1, -1, -65536, -387416393, -4294405135, -9688521, 0, 1, -1, -1048576, -282429470945, -281474581032631, -95363000655153, -2165724176, 1, 1
OFFSET
0,9
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*(d+j))) * A(n-j,k) for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, ...
-1, -1, -1, -1, ...
-1, -16, -256, -4096, ...
0, -713, -531185, -387416393, ...
0, -64711, -4294405135, -281474581032631, ...
CROSSREFS
Columns k=0..1 give A010815, A294704.
Rows n=0..1 give A000012, (-1)*A000012.
Sequence in context: A187585 A228574 A007791 * A326852 A070570 A347158
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 07 2017
STATUS
approved