login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j^(k*j)*x^j)^j(k*j) in powers of x.
3

%I #19 Nov 08 2017 12:02:41

%S 1,1,-1,1,-1,-1,1,-1,-16,0,1,-1,-256,-713,0,1,-1,-4096,-531185,-64711,

%T 1,1,-1,-65536,-387416393,-4294405135,-9688521,0,1,-1,-1048576,

%U -282429470945,-281474581032631,-95363000655153,-2165724176,1,1

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j^(k*j)*x^j)^j(k*j) in powers of x.

%H Seiichi Manyama, <a href="/A294699/b294699.txt">Antidiagonals n = 0..38, flattened</a>

%F A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*(d+j))) * A(n-j,k) for n > 0.

%e Square array begins:

%e 1, 1, 1, 1, ...

%e -1, -1, -1, -1, ...

%e -1, -16, -256, -4096, ...

%e 0, -713, -531185, -387416393, ...

%e 0, -64711, -4294405135, -281474581032631, ...

%Y Columns k=0..1 give A010815, A294704.

%Y Rows n=0..1 give A000012, (-1)*A000012.

%Y Cf. A294583, A294653, A294756.

%K sign,tabl

%O 0,9

%A _Seiichi Manyama_, Nov 07 2017