login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356482
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of 2*n, 2*n-1, ..., 1.
7
1, 1, 16, 714, 62528, 9056720, 1960138560, 592615689904, 238560786221056, 123358665203311104, 79683847063011614720
OFFSET
0,3
EXAMPLE
a(2) = 16 because the hafnian of
4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4
equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 16.
MATHEMATICA
k[i_]:=i; M[i_, j_, n_]:=Part[Part[ToeplitzMatrix[Reverse[Array[k, n]]], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) tm(n) = my(m = matrix(n, n, i, j, if (i==1, n-j+1, if (j==1, n-i+1)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A001792 (determinant of M(n)), A307783.
Sequence in context: A283534 A294704 A264114 * A201622 A362574 A220809
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Aug 09 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023
STATUS
approved