login
A356481
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of 1, 2, ..., 2*n.
7
1, 2, 21, 532, 24845, 1856094, 203076097, 30633787976, 6097546660185, 1548899852221210, 489114616743840461
OFFSET
0,2
EXAMPLE
a(2) = 21 because the hafnian of
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1
equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 21.
MATHEMATICA
k[i_]:=i; M[i_, j_, n_]:=Part[Part[ToeplitzMatrix[Array[k, n]], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) tm(n) = my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, i)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A001792 (absolute value of the determinant of M(n)), A204235 (permanent of M(n)).
Sequence in context: A226057 A158886 A092957 * A171107 A218768 A195736
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Aug 09 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023
STATUS
approved