login
A226057
E.g.f. A(x) satisfies: A(x)^2 = -x*log(1-A(x)) where A(x) = Sum_{n>=1} a(n)*x^n/n!^2.
0
1, 2, 21, 504, 21380, 1405800, 132139140, 16801276800, 2775758497344, 577868994460800, 147973478687496000, 45703277816543424000, 16753246307626306832640, 7190163806348621417679360, 3571395525388698501285792000
OFFSET
1,2
COMMENTS
Name is directly from a formula for A129505 given by Vladimir Kruchinin.
LINKS
D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
FORMULA
a(n) = n!^2*(n-1)!/(2*n-1)! * {[x^(n-1)] Product_{k=0..2*n-2} (1+k*x)}.
a(n) = n!^2*(n-1)!/(2*n-1)! * A129505(n), where A129505(n) = number of permutations of 2n-1 objects with exactly n cycles.
a(n) = n*A204248(n-1), where A204248(n) = permanent of the n-th principal submatrix of A002024.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2!^2 + 21*x^3/3!^2 + 504*x^4/4!^2 + 21380*x^5/5!^2 +...
where
A(x)^2 = 2*x^2/2! + 6*x^3/3! + 34*x^4/4! + 280*x^5/5! + 3013*x^6/6! + 39963*x^7/7! + 629541*x^8/8! +...
and
-log(1-A(x)) = 2*x/2! + 6*x^2/3! + 34*x^3/4! + 280*x^4/5! + 3013*x^5/6! +...
PROG
(PARI) {a(n)=polcoeff(prod(k=0, 2*n-2, 1+k*x), n-1)*n!^2*(n-1)!/(2*n-1)!}
CROSSREFS
Sequence in context: A377889 A303867 A238696 * A158886 A092957 A356481
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 24 2013
STATUS
approved