login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226059
Expansion of eta(q) * eta(q^9) * eta(q^21)^2 / (eta(q^3)^2 * eta(q^7) * eta(q^63)) in powers of q.
1
1, -1, -1, 2, -2, -1, 5, -3, -4, 8, -5, -6, 16, -8, -11, 23, -15, -16, 39, -21, -26, 58, -35, -39, 92, -51, -58, 132, -77, -85, 194, -108, -125, 276, -156, -174, 393, -218, -245, 542, -304, -336, 755, -417, -467, 1026, -573, -627, 1401, -770, -853, 1870
OFFSET
-1,4
LINKS
FORMULA
Euler transform of period 63 sequence [ -1, -1, 1, -1, -1, 1, 0, -1, 0, -1, -1, 1, -1, 0, 1, -1, -1, 0, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 1, -1, -1, 1, -1, 0, 0, -1, -1, 1, -1, -1, 0, -1, -1, 0, -1, -1, 1, 0, -1, 1, -1, -1, 0, -1, 0, 1, -1, -1, 1, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (u*v - 3) - (u+v) * (u^2 + u*v + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (63 t)) = 1 / f(t) where q = exp(2 Pi i t).
EXAMPLE
1/q - 1 - q + 2*q^2 - 2*q^3 - q^4 + 5*q^5 - 3*q^6 - 4*q^7 + 8*q^8 - 5*q^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; b := eta[q]*eta[q^9]*eta[q^21]^2/ (eta[q^3]^2*eta[q^7]*eta[q^63]); a:= CoefficientList[Series[q*b , {q, 0, 100}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^9 + A) * eta(x^21 + A)^2 / (eta(x^3 + A)^2 * eta(x^7 + A) * eta(x^63 + A)), n))}
CROSSREFS
Sequence in context: A184050 A367094 A324798 * A353738 A127742 A110438
KEYWORD
sign
AUTHOR
Michael Somos, May 24 2013
STATUS
approved