OFFSET
0,5
FORMULA
T(n,1) = A108917(n).
EXAMPLE
The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
0 1
1 1
2 2 1
5 3 3
8 4 9 1
17 6 16 1 2
24 7 33 4 9
46 11 52 3 18 1 4
64 12 91 6 38 3 15 1 1
107 17 138 9 68 2 28 2 12 0 2
147 19 219 12 117 6 56 3 34 2 9 0 3
Row n = 4 counts the following partitions:
(8) (44) (431) (221111)
(71) (3311) (422)
(62) (2222) (4211)
(611) (11111111) (41111)
(53) (3221)
(521) (32111)
(5111) (311111)
(332) (22211)
(2111111)
MATHEMATICA
t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]], n]==k&]], {n, 0, 5}, {k, 0, 1+PartitionsP[n]}];
Table[NestWhile[Most, t[[i]], Last[#]==0&], {i, Length[t]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 07 2023
STATUS
approved