login
A134226
Triangle T(n, k) = 3*n - 4 if k = n-1 otherwise k, read by rows.
2
1, 2, 2, 1, 5, 3, 1, 2, 8, 4, 1, 2, 3, 11, 5, 1, 2, 3, 4, 14, 6, 1, 2, 3, 4, 5, 17, 7, 1, 2, 3, 4, 5, 6, 20, 8, 1, 2, 3, 4, 5, 6, 7, 23, 9, 1, 2, 3, 4, 5, 6, 7, 8, 26, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 35, 13
OFFSET
1,2
FORMULA
T(n, k) = A134082(n, k) + A002260(n, k) - I, an infinite lower triangular matrix and I = Identity matrix.
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = 3*n - 4 if k = n-1 otherwise k.
Sum_{k=1..n} T(n, k) = A134227(n) = (n-1)*(n+6)/2 + [n=1]. (End)
EXAMPLE
First few rows of the triangle are:
1;
2, 2;
1, 5, 3;
1, 2, 8, 4;
1, 2, 3, 11, 5;
1, 2, 3, 4, 14, 6;
1, 2, 3, 4, 5, 17, 7;
...
MATHEMATICA
T[n_, k_]:= If[k==n-1, 3*n-4, k];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
PROG
(Sage)
def A134226(n, k): return 3*n-4 if k==n-1 else k
flatten([[A134226(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 17 2021
(Magma)
A134226:= func< n, k | k eq n-1 select 3*n-4 else k >;
[A134226(n, k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 17 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 14 2007
EXTENSIONS
New name and more terms added by G. C. Greubel, Feb 17 2021
STATUS
approved