login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134227
Row sums of triangle A134226.
3
1, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, 1479, 1534, 1590, 1647, 1705, 1764, 1824, 1885, 1947
OFFSET
1,2
COMMENTS
Essentially the same as A055999. - R. J. Mathar, Mar 28 2012
FORMULA
Binomial transform of (1, 3, 2, -1, 1, -1, 1, -1, 1, ...).
From G. C. Greubel, Feb 17 2021: (Start)
a(n) = (n-1)*(n+6)/2 + [n=1].
G.f.: x*(1 +x -x^3)/(1-x)^3.
E.g.f.: 3 + x + (-6 +6*x +x^2)*exp(x)/2. (End)
EXAMPLE
a(4) = 15 = sum of row 4 terms of triangle A134226: (1 + 2 + 8 + 4).
a(4) = 15 = (1, 3, 3, 1) dot (1, 3, 2, -1) = (1 + 9 + 6 - 1).
MATHEMATICA
Table[(n-1)*(n+6)/2 + Boole[n==1], {n, 70}] (* G. C. Greubel, Feb 17 2021 *)
LinearRecurrence[{3, -3, 1}, {1, 4, 9, 15}, 70] (* Harvey P. Dale, Aug 13 2024 *)
PROG
(Sage) [1]+[(n-1)*(n+6)/2 for n in (2..70)] # G. C. Greubel, Feb 17 2021
(Magma) [1] cat [(n-1)*(n+6)/2: n in [2..70]]; // G. C. Greubel, Feb 17 2021
CROSSREFS
Cf. A134226.
Sequence in context: A313299 A350547 A055999 * A022945 A022948 A022443
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Oct 14 2007
EXTENSIONS
Terms a(37) onward added by G. C. Greubel, Feb 17 2021
STATUS
approved