OFFSET
0,4
COMMENTS
The row sums are the even-indexed Fibonacci numbers.
Matrix product Q^(-1) * P * Q, where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158793. - Peter Bala, Jul 14 2021
REFERENCES
He, Tian-Xiao. "A-sequences, Z-sequence, and B-sequences of Riordan matrices." Discrete Mathematics 343.3 (2020): 111718.
A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55.
A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107.
A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC, 1997.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
FORMULA
Recurrence is d(0, 0)= 1, d(1, 0)=1, d(n+1, 0) = 2*d(n, 0) + sum(d(n-j, j)j>=1, n>=1 for leftmost column and d(n+1, k) = d(n, k-1) + d(n, k) + sum(d(n-j, k+j)j>=1, n>=2, k>=1 and n>j; Riordan array d(n, k): (((1-z)/2z)*(sqrt(1+z+z^2)/sqrt(1-3z+z^2) -1), ((1-z+z^2)-sqrt(1-2z-z^2-2z^3+z^4)/2z)).
EXAMPLE
Triangle starts:
1;
1,1;
2,2,1;
5,4,3,1;
12,10,7,4,1;
MAPLE
A110438 := proc (n, k)
add((-1)^binomial(n-i+1, 2)*binomial(floor((1/2)*n+(1/2)*i), i)*add(binomial(i, j)*binomial(j, floor((1/2)*j-(1/2)*k)), j = k..i), i = 0..n);
end proc:
seq(seq(A110438(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 14 2021
PROG
(PARI) \\ ColGf gives g.f. of k-th column.
ColGf(k, n)={my(g=(1 - x + x^2 - sqrt(1 - 2*x - x^2 - 2*x^3 + x^4 + O(x^(n-k+3))))/(2*x^2)); (1 - x)*g/(1 - x*g)*(x*g)^k}
T(n, k) = {polcoef(ColGf(k, n), n)} \\ Andrew Howroyd, Mar 02 2023
CROSSREFS
KEYWORD
AUTHOR
Asamoah Nkwanta (Nkwanta(AT)jewel.morgan.edu), Aug 10 2005
EXTENSIONS
Terms a(55) and beyond from Andrew Howroyd, Mar 02 2023
STATUS
approved