OFFSET
0,4
COMMENTS
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A002426 and where g(x) is the g.f. of A005043. - Philippe Deléham, Dec 05 2009
Matrix product P * Q * P^(-1), where P denotes Pascal's triangle A007318 and Q denotes A061554 (formed from P by sorting the rows into descending order). Cf. A158815 and A171243. - Peter Bala, Jul 13 2021
FORMULA
T(n, m) = Sum_{k=m..n-1} A130595(n,k) * A092392(k+1,m+1), with the triangular interpretation of A092392.
Conjecture: T(n,1) = A113682(n-1). - R. J. Mathar, Oct 06 2009
Sum_{k=0..n} T(n,k)*x^k = A002426(n), A005773(n+1), A000244(n), A126932(n) for x = 0,1,2,3 respectively. - Philippe Deléham, Dec 03 2009
T(n, k) = (-1)^(k + n) binomial(n, k) hypergeom([k/2 + 1/2, k/2 + 1, k - n], [k + 1, k + 1], 4). - Peter Luschny, Jul 17 2021
EXAMPLE
First rows of the triangle:
1;
1, 1;
3, 1, 1;
7, 4, 1, 1;
19, 9, 5, 1, 1;
51, 26, 11, 6, 1, 1;
141, 70, 34, 13, 7, 1, 1;
393, 197, 92, 43, 15, 8, 1, 1;
1107, 553, 265, 117, 53, 17, 9, 1, 1;
3139, 1570, 751, 346, 145, 64, 19, 10, 1, 1;
8953, 4476, 2156, 991, 441, 176, 76, 21, 11, 1, 1;
MAPLE
A158793 := proc (n, k)
add((-1)^(n+j)*binomial(n, j)*binomial(2*j-k, j-k), j = k..n);
end proc:
seq(seq(A158793(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
MATHEMATICA
T[n_, k_] := (-1)^(k + n) Binomial[n, k] HypergeometricPFQ[{k/2 + 1/2, k/2 + 1, k - n}, {k + 1, k + 1}, 4];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 17 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson & Roger L. Bagula, Mar 26 2009
EXTENSIONS
Simplified definition from R. J. Mathar, Oct 06 2009
STATUS
approved