login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046899
Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.
23
1, 1, 2, 1, 3, 6, 1, 4, 10, 20, 1, 5, 15, 35, 70, 1, 6, 21, 56, 126, 252, 1, 7, 28, 84, 210, 462, 924, 1, 8, 36, 120, 330, 792, 1716, 3432, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 1, 11, 66, 286, 1001
OFFSET
0,3
COMMENTS
C(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0) and (0,1). - Joerg Arndt, Jul 01 2011
Row sums are A001700.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) of waist k (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
If T(r,c), r=0,1,2,..., c=1,2,...,(r+1), are the triangle elements, then for r > 0, T(r,c) = binomial(r+c-1,c-1) = M(r,c) is the number of monotonic mappings from an ordered set of r elements into an ordered set of c elements. For example, there are 15 monotonic mappings from an ordered set of 4 elements into an ordered set of 3 elements. For c > r+1, use the identity M(r,c) = M(c-1,r+1) = T(c-1,r+1). For example, there are 210 monotonic mappings from an ordered set of 4 elements into an ordered set of 7 elements, because M(4,7) = T(6,5) = 210. Number of monotonic endomorphisms in a set of r elements, M(r,r), therefore appear on the second diagonal of the triangle which coincides with A001700. - Stanislav Sykora, May 26 2012
Start at the origin. Flip a fair coin to determine steps of (1,0) or (0,1). Stop when you are a (perpendicular) distance of n steps from the x axis or the y axis. For k = 0,1,...,n-1, C(n-1,k)/2^(n+k) is the probability that you will stop on the point (n,k). This is equal to the probability that you will stop on the point (k,n). Hence, Sum_{k=0..n} C(n,k)/2^(n+k) = 1. - Geoffrey Critzer, May 13 2017
REFERENCES
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
LINKS
Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1)=1, arXiv:1909.11222 [math.NT], 2019. See Qn(x) Table 1 p. 2.
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
FORMULA
T(n,k) = A092392(n,n-k), k = 0..n. - Reinhard Zumkeller, Jul 27 2012
T(n,k) = A178300(n,k), n>0, k = 1..n. - L. Edson Jeffery, Jul 23 2014
T(n,k) = (n + 1)*hypergeom([-n, 1 - k], [2], 1)). - Peter Luschny, Jan 09 2022
T(n,k) = hypergeom([-n, -k], [1], 1). - Peter Luschny, Mar 21 2024
G.f.: 1/((1-2x*y*C(x*y))*(1-x*C(x*s))), where C(x) is the g.f. for A000108, the Catalan numbers. - Michael D. Weiner, Jul 31 2024
EXAMPLE
The triangle is the lower triangular part of the square array:
1| 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2| 3, 4, 5, 6, 7, 8, 9, 10, ...
1, 3, 6| 10, 15, 21, 28, 36, 45, 55, ...
1, 4, 10, 20| 35, 56, 84, 120, 165, 220, ...
1, 5, 15, 35, 70| 126, 210, 330, 495, 715, ...
1, 6, 21, 56, 126, 252| 462, 792, 1287, 2002, ...
1, 7, 28, 84, 210, 462, 924| 1716, 3003, 5005, ...
1, 8, 36, 120, 330, 792, 1716, 3432| 6435, 11440, ...
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870| 24310, ...
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620| ...
The array read by antidiagonals gives the binomial triangle.
From Reinhard Zumkeller, Jul 27 2012: (Start)
Take the first n elements of the n-th diagonal (NW to SE) of left half of Pascal's triangle and write it as n-th row on the triangle on the right side, see above
0: 1 1
1: 1 _ 1 2
2: 1 2 __ 1 3 6
3: 1 3 __ __ 1 4 10 20
4: 1 4 6 __ __ 1 5 15 35 70
5: 1 5 10 __ __ __ 1 6 21 56 .. ..
6: 1 6 15 20 __ __ __ 1 7 28 .. .. .. ..
7: 1 7 21 35 __ __ __ __ 1 8 .. .. .. .. .. ..
8: 1 8 28 56 70 __ __ __ __ 1 .. .. .. .. .. .. .. .. (End)
MAPLE
for n from 0 to 10 do seq( binomial(n+m, n), m = 0 .. n) od; # Zerinvary Lajos, Dec 09 2007
MATHEMATICA
t[n_, k_] := Binomial[n + k, n]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [1, 0] ];
/* Joerg Arndt, Jul 01 2011 */
(Haskell)
import Data.List (transpose)
a046899 n k = a046899_tabl !! n !! k
a046899_row n = a046899_tabl !! n
a046899_tabl = zipWith take [1..] $ transpose a007318_tabl
-- Reinhard Zumkeller, Jul 27 2012
(Magma) /* As triangle */ [[Binomial(n+k, n): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 18 2015
(SageMath)
for n in (0..9):
print([multinomial(n, k) for k in (0..n)]) # Peter Luschny, Dec 24 2020
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from James A. Sellers
STATUS
approved