Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #96 Jan 04 2025 02:41:14
%S 1,1,2,1,3,6,1,4,10,20,1,5,15,35,70,1,6,21,56,126,252,1,7,28,84,210,
%T 462,924,1,8,36,120,330,792,1716,3432,1,9,45,165,495,1287,3003,6435,
%U 12870,1,10,55,220,715,2002,5005,11440,24310,48620,1,11,66,286,1001
%N Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.
%C C(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0) and (0,1). - _Joerg Arndt_, Jul 01 2011
%C Row sums are A001700.
%C T(n, k) is also the number of order-preserving full transformations (of an n-chain) of waist k (waist(alpha) = max(Im(alpha))). - _Abdullahi Umar_, Oct 02 2008
%C If T(r,c), r=0,1,2,..., c=1,2,...,(r+1), are the triangle elements, then for r > 0, T(r,c) = binomial(r+c-1,c-1) = M(r,c) is the number of monotonic mappings from an ordered set of r elements into an ordered set of c elements. For example, there are 15 monotonic mappings from an ordered set of 4 elements into an ordered set of 3 elements. For c > r+1, use the identity M(r,c) = M(c-1,r+1) = T(c-1,r+1). For example, there are 210 monotonic mappings from an ordered set of 4 elements into an ordered set of 7 elements, because M(4,7) = T(6,5) = 210. Number of monotonic endomorphisms in a set of r elements, M(r,r), therefore appear on the second diagonal of the triangle which coincides with A001700. - _Stanislav Sykora_, May 26 2012
%C Start at the origin. Flip a fair coin to determine steps of (1,0) or (0,1). Stop when you are a (perpendicular) distance of n steps from the x axis or the y axis. For k = 0,1,...,n-1, C(n-1,k)/2^(n+k) is the probability that you will stop on the point (n,k). This is equal to the probability that you will stop on the point (k,n). Hence, Sum_{k=0..n} C(n,k)/2^(n+k) = 1. - _Geoffrey Critzer_, May 13 2017
%D H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
%H Reinhard Zumkeller, <a href="/A046899/b046899.txt">Rows n=0..150 of triangle, flattened</a>
%H Karl Dilcher and Maciej Ulas, <a href="https://arxiv.org/abs/1909.11222">Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1)=1</a>, arXiv:1909.11222 [math.NT], 2019. See Qn(x) Table 1 p. 2.
%H H. W. Gould, <a href="/A007680/a007680.pdf">A class of binomial sums and a series transform</a>, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
%H A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1016/j.jalgebra.2003.10.023">Combinatorial results for semigroups of order-preserving partial transformations</a>, Journal of Algebra 278, (2004), 342-359.
%H A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1007/s00233-005-0553-6">Combinatorial results for semigroups of order-preserving full transformations</a>, Semigroup Forum 72 (2006), 51-62.
%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F T(n,k) = A092392(n,n-k), k = 0..n. - _Reinhard Zumkeller_, Jul 27 2012
%F T(n,k) = A178300(n,k), n>0, k = 1..n. - _L. Edson Jeffery_, Jul 23 2014
%F T(n,k) = (n + 1)*hypergeom([-n, 1 - k], [2], 1). - _Peter Luschny_, Jan 09 2022
%F T(n,k) = hypergeom([-n, -k], [1], 1). - _Peter Luschny_, Mar 21 2024
%F G.f.: 1/((1-2x*y*C(x*y))*(1-x*C(x*s))), where C(x) is the g.f. for A000108, the Catalan numbers. - _Michael D. Weiner_, Jul 31 2024
%e The triangle is the lower triangular part of the square array:
%e 1| 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2| 3, 4, 5, 6, 7, 8, 9, 10, ...
%e 1, 3, 6| 10, 15, 21, 28, 36, 45, 55, ...
%e 1, 4, 10, 20| 35, 56, 84, 120, 165, 220, ...
%e 1, 5, 15, 35, 70| 126, 210, 330, 495, 715, ...
%e 1, 6, 21, 56, 126, 252| 462, 792, 1287, 2002, ...
%e 1, 7, 28, 84, 210, 462, 924| 1716, 3003, 5005, ...
%e 1, 8, 36, 120, 330, 792, 1716, 3432| 6435, 11440, ...
%e 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870| 24310, ...
%e 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620| ...
%e The array read by antidiagonals gives the binomial triangle.
%e From _Reinhard Zumkeller_, Jul 27 2012: (Start)
%e Take the first n elements of the n-th diagonal (NW to SE) of left half of Pascal's triangle and write it as n-th row on the triangle on the right side, see above
%e 0: 1 1
%e 1: 1 _ 1 2
%e 2: 1 2 __ 1 3 6
%e 3: 1 3 __ __ 1 4 10 20
%e 4: 1 4 6 __ __ 1 5 15 35 70
%e 5: 1 5 10 __ __ __ 1 6 21 56 .. ..
%e 6: 1 6 15 20 __ __ __ 1 7 28 .. .. .. ..
%e 7: 1 7 21 35 __ __ __ __ 1 8 .. .. .. .. .. ..
%e 8: 1 8 28 56 70 __ __ __ __ 1 .. .. .. .. .. .. .. .. (End)
%p for n from 0 to 10 do seq( binomial(n+m,n), m = 0 .. n) od; # _Zerinvary Lajos_, Dec 09 2007
%t t[n_, k_] := Binomial[n + k, n]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 12 2013 *)
%o (PARI) /* same as in A092566 but use */
%o steps=[[1, 0], [1, 0] ];
%o /* _Joerg Arndt_, Jul 01 2011 */
%o (Haskell)
%o import Data.List (transpose)
%o a046899 n k = a046899_tabl !! n !! k
%o a046899_row n = a046899_tabl !! n
%o a046899_tabl = zipWith take [1..] $ transpose a007318_tabl
%o -- _Reinhard Zumkeller_, Jul 27 2012
%o (Magma) /* As triangle */ [[Binomial(n+k, n): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 18 2015
%o (SageMath)
%o for n in (0..9):
%o print([multinomial(n, k) for k in (0..n)]) # _Peter Luschny_, Dec 24 2020
%Y Cf. A000108, A046900, A001700, A007318, A034868, A092392, A239103, A178300.
%K nonn,tabl,easy,nice,changed
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _James A. Sellers_