|
|
A046901
|
|
a(n) = a(n-1) - n if a(n-1) > n, else a(n) = a(n-1) + n.
|
|
14
|
|
|
1, 3, 6, 2, 7, 1, 8, 16, 7, 17, 6, 18, 5, 19, 4, 20, 3, 21, 2, 22, 1, 23, 46, 22, 47, 21, 48, 20, 49, 19, 50, 18, 51, 17, 52, 16, 53, 15, 54, 14, 55, 13, 56, 12, 57, 11, 58, 10, 59, 9, 60, 8, 61, 7, 62, 6, 63, 5, 64, 4, 65, 3, 66, 2, 67, 1, 68, 136, 67, 137
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Variation (1) on Recamán's sequence A005132.
a(A134931(n-1)) = 1. - Reinhard Zumkeller, Jan 31 2013
|
|
LINKS
|
N. J. A. Sloane, First 10000 terms
Nick Hobson, Python program for this sequence
Kival Ngaokrajang, scatter plot in log-log scale looks, for both this sequence and A211346.
Index entries for sequences related to Recamán's sequence
|
|
FORMULA
|
This is a concatenation S_0, S_1, S_2, ... where S_i = [b_0, b_1, ..., b_{k-1}], k=5*3^i, with b_0 = 1, b_{2j} = k+j, b_{2j+1} = (k+1)/2-j. E.g., S_0 = [1, 3, 6, 2, 7].
For any m>=1, for k such that 5*3^k+3>12m, a((5*3^k+3-12*m)/6)= m. For example, for k>=1, a((5*3^k-9)/6) = 1. - Benoit Cloitre, Oct 31 2002
a(n) = A008343(n+1) + 1. - Jon Maiga, Jul 09 2021
|
|
MAPLE
|
A046901 := proc(n) option remember; if n = 1 then 1 else if A046901(n-1)>n then A046901(n-1)-n else A046901(n-1)+n; fi; fi; end;
|
|
MATHEMATICA
|
a[1]=1; a[n_]:=a[n]=If[a[n-1]>n, a[n-1]-n, a[n-1]+n]; Table[a[i], {i, 70}] (* Harvey P. Dale, Apr 01 2011 *)
nxt[{n_, a_}]:={n+1, If[a>n+1, a-n-1, a+n+1]}; NestList[nxt, {1, 1}, 70][[All, 2]] (* Harvey P. Dale, Jun 01 2019 *)
|
|
PROG
|
(PARI) a(n)=if(n<2, 1, a(n-1)-if(sign(n-a(n-1))+1, -1, 1)*n);
(Haskell)
a046901 n = a046901_list !! (n-1)
a046901_list = scanl1 (\u v -> if u > v then u - v else u + v) [1..]
-- Reinhard Zumkeller, Dec 07 2015, Jan 31 2013
|
|
CROSSREFS
|
Cf. A008343, A008344, A005132.
Cf. A076039, A003462, A076041, A076042, A057198.
Cf. A085059.
Cf. A238324.
Sequence in context: A021969 A172372 A279390 * A306640 A169751 A105332
Adjacent sequences: A046898 A046899 A046900 * A046902 A046903 A046904
|
|
KEYWORD
|
easy,nonn,nice,look
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|