

A046900


Triangle inverse to that in A046899.


1



1, 1, 1, 1, 3, 2, 1, 3, 10, 6, 1, 9, 10, 42, 24, 17, 21, 50, 42, 216, 120, 107, 33, 230, 294, 216, 1320, 720, 415, 1173, 670, 1974, 1944, 1320, 9360, 5040, 1231, 13515, 4510, 11130, 17064, 14520, 9360, 75600, 40320, 56671, 113739, 131230, 20202, 136296, 157080, 121680, 75600
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Sequence gives numerators; denominators are A001813.


REFERENCES

H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 7183.


LINKS

Table of n, a(n) for n=0..52.
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 7183. (Annotated scanned copy)


EXAMPLE

1; 1/2 1/2; 1/12 3/12 2/12; ...


MAPLE

with(linalg): b:=proc(n, k) if k<=n then binomial(n+k, k) else 0 fi end: bb:=(n, k)>b(n1, k1): B:=matrix(12, 12, bb): A:=inverse(B): a:=(n, k)>((2*n2)!/(n1)!)*A[n, k]: for n from 0 to 10 do seq(a(n, k), k=1..n) od; # yields sequence in triangular form  Emeric Deutsch


MATHEMATICA

max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max1}, {k, 0, max1}]; AA = Inverse[BB]; a[n_, k_] := ((2n2)!/(n1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* JeanFrançois Alcover, Aug 08 2012, after Emeric Deutsch *)


CROSSREFS

Cf. A046899.
Sequence in context: A106611 A025261 A111572 * A270828 A325315 A230845
Adjacent sequences: A046897 A046898 A046899 * A046901 A046902 A046903


KEYWORD

sign,tabl,easy,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Emeric Deutsch, Jun 25 2005


STATUS

approved



