login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270828
a(n) = (Sum_{k=1..2n-1} prime(k)) mod prime(n).
1
0, 1, 3, 2, 1, 4, 0, 5, 3, 17, 30, 23, 35, 17, 23, 24, 41, 19, 38, 3, 54, 4, 44, 77, 38, 98, 62, 25, 3, 73, 108, 67, 27, 124, 108, 66, 34, 4, 130, 102, 80, 40, 32, 169, 132, 78, 79, 128, 75, 5, 215, 227, 189, 243, 255, 259, 261, 193, 197, 162, 98, 148, 9, 281, 213, 194, 87, 109, 261, 171
OFFSET
1,3
COMMENTS
a(n) = 0 for n = 1, 7, 100. Are there any other values?
No other zero up to n=200000. - Michel Marcus, Jan 31 2019
LINKS
FORMULA
a(n) = A007504(2*n-1) mod A000040(n).
EXAMPLE
a(2) = 1 because (2 + 3 + 5) mod 3 = 1.
a(7) = 0 because (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41) mod 17 = 238 mod 17 = 0.
MATHEMATICA
Table[Mod[Sum[Prime@ k, {k, 2 n - 1}], Prime@ n], {n, 70}] (* Michael De Vlieger, Mar 24 2016 *)
PROG
(PARI) for(n=1, 1e2, print1(sum(k=1, 2*n-1, prime(k)) % prime(n), ", "));
(PARI) lista(nn) = {my(s=0, p=1); for (n=1, nn, p = nextprime(p+1); s += p; print1(s % prime(n), ", "); p = nextprime(p+1); s += p; ); } \\ Michel Marcus, Jan 31 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 23 2016
STATUS
approved