This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194528 First coordinate of (5,8)-Lagrange pair for n. 3
 -3, 2, -1, 4, 1, -2, 3, 0, -3, 2, -1, -4, 1, -2, 3, 0, 5, 2, -1, 4, 1, -2, 3, 0, -3, 2, -1, 4, 1, 6, 3, 0, 5, 2, -1, 4, 1, -2, 3, 0, 5, 2, 7, 4, 1, 6, 3, 0, 5, 2, -1, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 0, 5, 2, 7, 4, 9, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 8, 5, 10, 7, 4, 9, 6, 3, 8, 5, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A194508. LINKS EXAMPLE This table shows (x(n),y(n)) for 1<=n<=13: n..... 1..2..3..4..5..6..7..8..9..10..11..12..13 x(n)..-3..2.-1..4..1.-2..3..0.-3..2..-1..-4...1 y(n).. 2.-1..1.-2..0..2.-1..1..3..0...2...4...1 MATHEMATICA c = 5; d = 8; x1 = {-3, 2, -1, 4, 1, -2, 3, 0, -3, 2, -1, -4, 1}; y1 = {2, -1, 1, -2, 0, 2, -1, 1, 3, 0, 2, 4, 1}; x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1] y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1] Table[x[n], {n, 1, 100}]  (* A194528 *) Table[y[n], {n, 1, 100}]  (* A194529 *) r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n] TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 40}]] CROSSREFS Cf. A194508, A194529. Sequence in context: A270828 A325315 A230845 * A194520 A082727 A264597 Adjacent sequences:  A194525 A194526 A194527 * A194529 A194530 A194531 KEYWORD sign AUTHOR Clark Kimberling, Aug 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 04:23 EST 2019. Contains 329991 sequences. (Running on oeis4.)