login
A194531
Numerator of row 4 in A051714(n) or row 3 in A176672(n).
3
0, 1, 1, 2, 5, 5, 7, 28, 3, 15, 55, 22, 13, 91, 35, 40, 34, 51, 57, 190, 35, 77, 253, 92, 25, 325, 117, 126, 203, 145, 155, 496, 44, 187, 595, 210, 111, 703, 247, 260, 205, 287, 301, 946, 165, 345, 1081, 376, 98, 1225, 425
OFFSET
0,4
COMMENTS
Akiyama-Tanigawa algorithm from 1/n leads to Bernoulli A164555(n)/A027642(n):
1, 1/2, 1/3, 1/4,
1/2, 1/3, 1/4, 1/5,
1/6, 1/6, 3/20, 2/15, =A026741(n+1)/A045896(n+1),
0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495 =a(n)/b(n).
MATHEMATICA
a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)*(a[n-1, k] - a[n-1, k+1]); Table[a[3, k], {k, 0, 50}] // Numerator (* Jean-François Alcover, Sep 19 2012 *)
CROSSREFS
Cf. A193220 (denominators).
Sequence in context: A329813 A165917 A165898 * A092394 A027438 A334388
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Aug 28 2011
STATUS
approved