OFFSET
1,2
COMMENTS
Dirichlet convolution of A000583 with the multiplicative function which starts 1, 5, 10, 0, 26, 50, 50, 0, 0, 130, 122, 0, 170, 250, 260, 0, 290,..
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
Multiplicative with a(p^e) = p^(4*(e-1))*(p^2+p+1)*(p^2-p+1), e>0.
Dirichlet g.f.: zeta(s-4)*product_{primes p} (1+p^(2-s)+p^(-s)).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5) = 1.2196771388395597011492820972459808778277319864216893177353903924... - Vaclav Kotesovec, Dec 18 2019
Sum_{n>=1} 1/a(n) = (Pi^8/14175) * Product_{p prime} (1 + 1/p^2 + 1/p^4 - 1/p^6 - 1/p^8) = 1.06469274411... . - Amiram Eldar, Nov 05 2022
MAPLE
f:= proc(n) local t;
mul(t[1]^(4*(t[2]-1))*((t[1]^2+1)^2-t[1]^2), t=ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, Jun 14 2016
MATHEMATICA
JordanTotient[n_, k_: 1] := DivisorSum[n, #^k MoebiusMu[n/#] &] /; (n > 0) && IntegerQ@ n; Table[JordanTotient[n, 6]/JordanTotient[n, 2], {n, 12}] (* Michael De Vlieger, Jun 14 2016, after Enrique Pérez Herrero at A065959 *)
f[p_, e_] := p^(4*(e-1))*(p^2+p+1)*(p^2-p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]-1))*(f[i, 1]^2+f[i, 1]+1)*(f[i, 1]^2-f[i, 1]+1)); } \\ Amiram Eldar, Nov 05 2022
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, Aug 28 2011
STATUS
approved