The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194533 Jordan function ratio J_8(n)/J_2(n). 0
 1, 85, 820, 5440, 16276, 69700, 120100, 348160, 597780, 1383460, 1786324, 4460800, 4855540, 10208500, 13346320, 22282240, 24221380, 50811300, 47176564, 88541440, 98482000, 151837540, 148316260, 285491200, 254312500, 412720900, 435781620, 653344000, 595531444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..29. FORMULA a(n) = A069093(n)/A007434(n) = A065960(n) * A065958(n). Multiplicative with a(p^e) = p^(6*(e-1))*(p^2+1)*(p^4+1), e>0. Dirichlet g.f.: zeta(s-6)*Product_{primes p} (1+p^(4-s)+p^(2-s)+p^(-s)). Dirichlet convolution of A001014 with the multiplicative sequence 1, 21, 91, 0, 651, 1911, 2451, 0, 0, 13671, 14763, 0, 28731, 51471... Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = Product_{primes p} (1 + 1/p^3 + 1/p^5 + 1/p^7) = 1.22847463998021088097249049512949441921891884186337179613337753... - Vaclav Kotesovec, Dec 18 2019 MATHEMATICA f[p_, e_] := p^(6*(e - 1))*(p^2 + 1)*(p^4 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 01 2022 *) CROSSREFS Cf. A001014, A007434, A065958, A065960, A069093. Sequence in context: A297599 A173470 A202009 * A069308 A183643 A206163 Adjacent sequences: A194530 A194531 A194532 * A194534 A194535 A194536 KEYWORD nonn,mult,easy AUTHOR R. J. Mathar, Aug 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 01:38 EDT 2024. Contains 372768 sequences. (Running on oeis4.)