The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194530 Number of unlabeled rigid interval posets with n non-maximal and 2 maximal elements. 4
 0, 1, 3, 9, 32, 132, 623, 3314, 19628, 128126, 914005, 7074517, 59050739, 528741491, 5055414317, 51406084221, 553946196892, 6305737560455, 75610546284387, 952559077043183, 12579235034203780, 173759983171005721, 2505751777457313815, 37657189917162605826 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order (journal) (2011). FORMULA a(n) = [ y^n z^2 ] W(y,z); W(y,z) = z + z*(W(y,y+z+yz) - W(y,z)). From Peter Bala, Aug 21 2023: (Start) Conjectural g.f.: 1) A(x) = Sum_{n >= 0} n*(Product_{i = 1..n} 1 - 1/(1+x)^i). 2) A(x) = (1/2)*Sum_{n >= 0} n*(n+1)/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A138265. (End) MAPLE w:= proc(t) option remember; `if`(t=0, 1, expand(convert(series(series(z +z*(subs( z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom))) end: a:= n-> coeff(coeff(w(2+n), z, 2), y, n): seq(a(n), n=0..50); MATHEMATICA w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; a[n_] := a[n] = Coefficient[Coefficient[w[2+n], z, 2], y, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *) CROSSREFS 2nd column of A193344, Column k=2 of A218757. Cf. A138265. Sequence in context: A320180 A183425 A039628 * A324238 A005964 A246138 Adjacent sequences: A194527 A194528 A194529 * A194531 A194532 A194533 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 07:37 EST 2024. Contains 370367 sequences. (Running on oeis4.)