login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194529 Second coordinate of (5,8)-Lagrange pair for n. 3
2, -1, 1, -2, 0, 2, -1, 1, 3, 0, 2, 4, 1, 3, 0, 2, -1, 1, 3, 0, 2, 4, 1, 3, 5, 2, 4, 1, 3, 0, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 9, 6, 8, 5, 7, 4, 6, 8, 5, 7, 9, 6, 8, 10, 7, 9, 6, 8, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A194508.

LINKS

Table of n, a(n) for n=1..95.

FORMULA

From Chai Wah Wu, Jan 24 2020: (Start)

a(n) = a(n-1) + a(n-13) - a(n-14) for n > 14.

G.f.: x*(-3*x^12 + 2*x^11 + 2*x^10 - 3*x^9 + 2*x^8 + 2*x^7 - 3*x^6 + 2*x^5 + 2*x^4 - 3*x^3 + 2*x^2 - 3*x + 2)/(x^14 - x^13 - x + 1). (End)

EXAMPLE

This table shows (x(n),y(n)) for 1<=n<=13:

n..... 1..2..3..4..5..6..7..8..9..10..11..12..13

x(n)..-3..2.-1..4..1.-2..3..0.-3..2..-1..-4...1

y(n).. 2.-1..1.-2..0..2.-1..1..3..0...2...4...1

MATHEMATICA

c = 5; d = 8;

x1 = {-3, 2, -1, 4, 1, -2, 3, 0, -3, 2, -1, -4, 1};

y1 = {2, -1, 1, -2, 0, 2, -1, 1, 3, 0, 2, 4, 1};

x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]

y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]

Table[x[n], {n, 1, 100}]  (* A194528 *)

Table[y[n], {n, 1, 100}]  (* A194529 *)

r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]

TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 40}]]

CROSSREFS

Cf. A194508, A194528.

Sequence in context: A282634 A039980 A306660 * A055138 A177717 A155997

Adjacent sequences:  A194526 A194527 A194528 * A194530 A194531 A194532

KEYWORD

sign,changed

AUTHOR

Clark Kimberling, Aug 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 01:49 EST 2020. Contains 331229 sequences. (Running on oeis4.)