The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334388 Decimal expansion of Sum_{k>=1} A007953(k) / (k*(k+1)) where A007953(k) is the sum of digits of the integer k. 1
 2, 5, 5, 8, 4, 2, 7, 8, 8, 1, 1, 0, 4, 4, 9, 5, 2, 0, 4, 4, 6, 4, 4, 3, 4, 9, 4, 9, 6, 4, 9, 2, 9, 3, 5, 6, 4, 0, 0, 1, 2, 2, 3, 8, 7, 6, 2, 5, 4, 1, 9, 2, 1, 9, 5, 5, 9, 2, 5, 8, 6, 5, 5, 6, 6, 3, 0, 6, 3, 6, 2, 3, 2, 9, 7, 4, 8, 3, 6, 0, 8, 9, 1, 5, 1, 1, 0, 8, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This series is convergent. Jeffrey Shallit generalizes this result to any base b (see Amer. Math. Month. link): Sum_{k>=1} digsum(k)_b / (k*(k+1)) = (b/(b-1)) * log(b) where digsum(k)_b is the sum of the digits of k when expressed in base b. LINKS Jean-Paul Allouche, Somme de séries de nombres réels, Image des Mathématiques, CNRS, 2010 (in French). J. O. Shallit, Solutions of Advanced Problems, 6450, The American Mathematical Monthly, Vol. 92, No. 7, Aug.-Sep., 1985, pp. 513-514; DOI: 10.2307/2322523. FORMULA Equals 1/(1*2) + 2/(2*3) + 3/(3*4) + 4/(4*5) + ... + 1/(10*11) + 2/(11*12) + ... Equals (10/9) * log(10). EXAMPLE 2.5584278811044952044644349496492935640012238762541921955925865566 MAPLE evalf(10*log(10)/9, 90); MATHEMATICA RealDigits[10*Log[10]/9, 10, 100][[1]] (* Amiram Eldar, Sep 08 2020 *) CROSSREFS Cf. A002392 (log(10)), A007953 (digsum), A016627 (for base 2). Cf. A308314. Sequence in context: A194531 A092394 A027438 * A204237 A153162 A168199 Adjacent sequences:  A334385 A334386 A334387 * A334389 A334390 A334391 KEYWORD nonn,base,cons AUTHOR Bernard Schott, Sep 08 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 03:51 EDT 2021. Contains 345354 sequences. (Running on oeis4.)