login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308314
Decimal expansion of Sum_{k>=1} (1/A055642(k)^A055642(k)) where A055642(k) is the number of digits of the integer k.
2
1, 6, 8, 0, 5, 2, 4, 5, 3, 7, 5, 2, 6, 2, 1, 6, 8, 9, 4, 9, 0, 8, 5, 6, 7, 3, 3, 2, 0, 5, 5, 6, 7, 2, 4, 5, 2, 1, 9, 6, 5, 2, 6, 7, 9, 9, 7, 1, 9, 8, 4, 9, 5, 0, 4, 9, 1, 5, 5, 7, 0, 3, 5, 9, 8, 1, 4, 3, 7, 9, 8, 3, 4, 8, 1, 7, 5, 7, 0, 8, 8, 9, 4, 8, 3, 4, 6, 1, 6, 4, 4, 4, 5, 0, 7, 8, 4, 8, 6, 4
OFFSET
3,2
COMMENTS
With summation by parts to obtain 1st formula:
Sum_{k>=1} (1/length(k)^length(k)) =
Sum_{m=1..9} (1/1^1) + Sum_{m=10..99} (1/2^2) + Sum_{m=100...999} (1/3^3) + Sum_{m=1000...9999} (1/4^4) + ... =
9*(1/1^1) + 90*(1/2^2) + 900*(1/3^3) + 9000*(1/4^4) + 90000*(1/5^5) + ... =
9 ( 1/1^1 + 10^1/2^2 + 10^2/3^3 + 10^3/4^4 + 10^4/5^5 + ... =
(9/10) * (10^1/1^1 + 10^2/2^2 + 10^3/3^3 + 10^4/4^4 + 10^5/5^5 + ... =
(9/10) * ( (10/1)^1 + (10/2)^2 + (10/3)^3 + (10/4)^4 + (10/5)^5 + ... =
(9/10) * Sum_{m>=1} (10/m)^m.
REFERENCES
Xavier Merlin, Methodix Analyse, Ellipses, 1997, Exercice 22 p. 120.
J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.h" p. 248.
FORMULA
Equals (9/10) * Sum_{k>=1} (10/k)^k.
Equals Sum_{n>=1} (1/A138908(n)).
EXAMPLE
168.05245375262168949085673320556724...
MAPLE
evalf((9/10) * Sum((10/n)^n, n=1..infinity), 100);
PROG
(PARI) (9/10) * suminf(k=1, (10/k)^k) \\ Michel Marcus, Jun 08 2019
CROSSREFS
Sequence in context: A021151 A200116 A360500 * A097909 A143819 A372605
KEYWORD
nonn,base,cons
AUTHOR
Bernard Schott, May 19 2019
STATUS
approved