login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200116 Decimal expansion of least x satisfying 2*x^2 - 2*cos(x) = sin(x), negated. 3
6, 8, 0, 3, 2, 6, 4, 1, 4, 1, 3, 8, 6, 7, 9, 2, 9, 6, 2, 3, 9, 6, 3, 1, 6, 2, 0, 7, 3, 6, 4, 1, 9, 1, 7, 6, 8, 6, 5, 5, 3, 0, 2, 5, 8, 0, 2, 1, 0, 8, 1, 4, 5, 3, 5, 6, 0, 8, 0, 7, 7, 9, 5, 9, 8, 9, 2, 6, 3, 3, 9, 2, 2, 7, 0, 8, 1, 5, 4, 8, 2, 0, 3, 7, 7, 9, 1, 0, 0, 2, 2, 0, 1, 2, 5, 7, 6, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.680326414138679296239631620736419...

greatest x: 0.9847126993630673524991380090748...

MATHEMATICA

a = 2; b = -2; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.69, -.68}, WorkingPrecision -> 110]

RealDigits[r]  (* A200116 *)

r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]

RealDigits[r]  (* A200117 *)

PROG

(PARI) a=2; b=-2; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018

CROSSREFS

Cf. A199949.

Sequence in context: A011315 A268508 A021151 * A308314 A097909 A143819

Adjacent sequences:  A200113 A200114 A200115 * A200117 A200118 A200119

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 14:40 EDT 2021. Contains 347618 sequences. (Running on oeis4.)