login
A200113
Decimal expansion of the area K of cyclic pentagon with sides 2, 3, 5, 7, and 11.
1
4, 1, 9, 5, 2, 9, 9, 2, 3, 6, 1, 3, 8, 0, 8, 9, 2, 4, 2, 5, 2, 7, 8, 6, 7, 3, 1, 3, 4, 4, 1, 3, 4, 9, 6, 9, 9, 5, 5, 6, 6, 2, 8, 1, 4, 2, 3, 8, 7, 4, 0, 0, 7, 5, 0, 7, 4, 1, 1, 5, 0, 0, 5, 6, 4, 7, 5, 0, 2, 4, 3, 0, 7, 4, 1, 5, 4, 5, 1, 8, 7, 5, 7, 3, 8, 3
OFFSET
2,1
COMMENTS
s = {2,3,5,7,11}; R = circumradius (A200257).
K = sum((s(n)/4)(4*R^2-s(n)^2)^(1/2), n=1..5) = 41.9529923613808924252...
This is maximal area of pentagon with sides 2, 3, 5, 7, 11.
MATHEMATICA
digits = 86; r = x /. FindRoot[ Sum[ ArcSin[ Prime[n]/2/x], {n, 5}] == Pi, {x, 5}, WorkingPrecision -> digits+10] // Re; Sum[p/4*(4*r^2 - p^2)^(1/2), {p, Prime /@ Range[5]}] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013, after Zak Seidov *)
CROSSREFS
Cf. A200257.
Sequence in context: A073364 A125165 A259448 * A065489 A346404 A332385
KEYWORD
nonn,cons
AUTHOR
Zak Seidov, Nov 18 2011
STATUS
approved