The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200118 Decimal expansion of least x satisfying 2*x^2 - 2*cos(x) = 3*sin(x), negated. 3
 4, 6, 6, 8, 2, 3, 6, 0, 7, 5, 7, 0, 9, 8, 6, 7, 9, 9, 5, 8, 4, 1, 3, 4, 1, 5, 4, 4, 3, 1, 5, 8, 4, 0, 4, 7, 4, 2, 6, 6, 6, 6, 7, 3, 0, 0, 8, 1, 8, 1, 8, 7, 7, 3, 4, 2, 9, 0, 2, 0, 5, 1, 2, 5, 7, 8, 4, 0, 2, 8, 8, 6, 8, 6, 8, 7, 4, 3, 9, 5, 5, 4, 5, 2, 5, 8, 6, 5, 8, 5, 4, 5, 5, 4, 8, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences. The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x: -0.46682360757098679958413415443158404... greatest x: 1.3071909920738130664046341866545604... MATHEMATICA a = 2; b = -2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.47, -.48}, WorkingPrecision -> 110] RealDigits[r] (* A200118 *) r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.31}, WorkingPrecision -> 110] RealDigits[r] (* A200119 *) PROG (PARI) a=2; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018 CROSSREFS Cf. A199949. Sequence in context: A103413 A103412 A103411 * A254275 A074672 A070259 Adjacent sequences: A200115 A200116 A200117 * A200119 A200120 A200121 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 14 2011 EXTENSIONS Terms a(89) to a(96) corrected by G. C. Greubel, Jun 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 03:12 EDT 2024. Contains 373402 sequences. (Running on oeis4.)