login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200118 Decimal expansion of least x satisfying 2*x^2 - 2*cos(x) = 3*sin(x), negated. 3
4, 6, 6, 8, 2, 3, 6, 0, 7, 5, 7, 0, 9, 8, 6, 7, 9, 9, 5, 8, 4, 1, 3, 4, 1, 5, 4, 4, 3, 1, 5, 8, 4, 0, 4, 7, 4, 2, 6, 6, 6, 6, 7, 3, 0, 0, 8, 1, 8, 1, 8, 7, 7, 3, 4, 2, 9, 0, 2, 0, 5, 1, 2, 5, 7, 8, 4, 0, 2, 8, 8, 6, 8, 6, 8, 7, 4, 3, 9, 5, 5, 4, 5, 2, 5, 8, 6, 5, 8, 5, 4, 5, 5, 4, 8, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.46682360757098679958413415443158404...

greatest x: 1.3071909920738130664046341866545604...

MATHEMATICA

a = 2; b = -2; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.47, -.48}, WorkingPrecision -> 110]

RealDigits[r]  (* A200118 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.31}, WorkingPrecision -> 110]

RealDigits[r]  (* A200119 *)

PROG

(PARI) a=2; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018

CROSSREFS

Cf. A199949.

Sequence in context: A103413 A103412 A103411 * A254275 A074672 A070259

Adjacent sequences:  A200115 A200116 A200117 * A200119 A200120 A200121

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

EXTENSIONS

Terms a(89) to a(96) corrected by G. C. Greubel, Jun 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:10 EDT 2021. Contains 347577 sequences. (Running on oeis4.)