

A200118


Decimal expansion of least x satisfying 2*x^2  2*cos(x) = 3*sin(x), negated.


3



4, 6, 6, 8, 2, 3, 6, 0, 7, 5, 7, 0, 9, 8, 6, 7, 9, 9, 5, 8, 4, 1, 3, 4, 1, 5, 4, 4, 3, 1, 5, 8, 4, 0, 4, 7, 4, 2, 6, 6, 6, 6, 7, 3, 0, 0, 8, 1, 8, 1, 8, 7, 7, 3, 4, 2, 9, 0, 2, 0, 5, 1, 2, 5, 7, 8, 4, 0, 2, 8, 8, 6, 8, 6, 8, 7, 4, 3, 9, 5, 5, 4, 5, 2, 5, 8, 6, 5, 8, 5, 4, 5, 5, 4, 8, 1, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.


LINKS



EXAMPLE

least x: 0.46682360757098679958413415443158404...
greatest x: 1.3071909920738130664046341866545604...


MATHEMATICA

a = 2; b = 2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, 3, 3}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .47, .48}, WorkingPrecision > 110]
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.31}, WorkingPrecision > 110]


PROG

(PARI) a=2; b=2; c=3; solve(x=1, 0, a*x^2 + b*cos(x)  c*sin(x)) \\ G. C. Greubel, Jun 29 2018


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



