login
A200120
Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = sin(x), negated.
3
8, 1, 5, 2, 3, 3, 2, 2, 3, 4, 1, 0, 5, 1, 4, 1, 3, 1, 2, 0, 5, 9, 2, 1, 2, 0, 0, 0, 2, 2, 2, 2, 0, 9, 7, 0, 3, 0, 0, 7, 3, 1, 1, 5, 4, 3, 9, 1, 2, 1, 5, 4, 0, 2, 0, 2, 5, 7, 2, 7, 1, 6, 8, 7, 7, 0, 1, 3, 5, 7, 9, 2, 2, 8, 9, 8, 8, 1, 8, 1, 7, 6, 1, 0, 0, 3, 9, 4, 0, 2, 9, 3, 5, 5, 6, 3, 0, 9, 3
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.815233223410514131205921200022220970300...
greatest x: 1.0743092065060468901083577789286306342...
MATHEMATICA
a = 2; b = -3; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110]
RealDigits[r] (* A200120 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.07, 1.08}, WorkingPrecision -> 110]
RealDigits[r] (* A200121 *)
PROG
(PARI) a=2; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018
CROSSREFS
Cf. A199949.
Sequence in context: A202284 A231772 A338935 * A154861 A153495 A046471
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved