login
A200119
Decimal expansion of greatest x satisfying 2*x^2 - 2*cos(x) = 3*sin(x).
3
1, 3, 0, 7, 1, 9, 0, 9, 9, 2, 0, 7, 3, 8, 1, 3, 0, 6, 6, 4, 0, 4, 6, 3, 4, 1, 8, 6, 6, 5, 4, 5, 6, 0, 4, 5, 6, 2, 8, 2, 6, 0, 4, 5, 6, 8, 3, 5, 4, 3, 0, 5, 8, 9, 0, 4, 7, 6, 7, 6, 9, 5, 2, 8, 0, 0, 3, 8, 9, 7, 8, 8, 2, 5, 4, 6, 1, 4, 1, 9, 7, 9, 5, 3, 1, 9, 0, 8, 2, 0, 8, 7, 8, 9, 7, 6, 2, 3, 2
OFFSET
1,2
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.46682360757098679958413415443158404...
greatest x: 1.3071909920738130664046341866545604...
MATHEMATICA
a = 2; b = -2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.47, -.48}, WorkingPrecision -> 110]
RealDigits[r] (* A200118 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.31}, WorkingPrecision -> 110]
RealDigits[r] (* A200119 *)
PROG
(PARI) a=2; b=-2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018
CROSSREFS
Cf. A199949.
Sequence in context: A153346 A011080 A021769 * A291943 A203622 A201571
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved