Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 18 2023 09:19:16
%S 1,-1,1,1,-3,2,1,3,-10,6,-1,9,10,-42,24,-17,21,50,42,-216,120,-107,
%T -33,230,294,216,-1320,720,-415,-1173,670,1974,1944,1320,-9360,5040,
%U 1231,-13515,-4510,11130,17064,14520,9360,-75600,40320,56671,-113739,-131230,20202,136296,157080,121680,75600
%N Triangle inverse to that in A046899.
%C Sequence gives numerators; denominators are A001813.
%D H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
%H H. W. Gould, <a href="/A007680/a007680.pdf">A class of binomial sums and a series transform</a>, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
%e 1; -1/2 1/2; 1/12 -3/12 2/12; ...
%p with(linalg): b:=proc(n,k) if k<=n then binomial(n+k,k) else 0 fi end: bb:=(n,k)->b(n-1,k-1): B:=matrix(12,12,bb): A:=inverse(B): a:=(n,k)->((2*n-2)!/(n-1)!)*A[n,k]: for n from 0 to 10 do seq(a(n,k),k=1..n) od; # yields sequence in triangular form - _Emeric Deutsch_
%t max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max-1}, {k, 0, max-1}]; AA = Inverse[BB]; a[n_, k_] := ((2n-2)!/(n-1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* _Jean-François Alcover_, Aug 08 2012, after _Emeric Deutsch_ *)
%Y Cf. A001813, A046899.
%K sign,tabl,easy,nice
%O 0,5
%A _N. J. A. Sloane_
%E More terms from _Emeric Deutsch_, Jun 25 2005