login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211346
a(1) = 1; for n>1, let k = n-1 mod 4, then a(n) = operation k applied to the pair (a(n-1), n), where operation 1 is addition, operation 2 is difference (with reset to n if 0), operation 3 is multiplication and operation 0 is division with rounding.
2
1, 3, 3, 12, 2, 8, 1, 8, 1, 11, 11, 132, 10, 24, 9, 144, 8, 26, 7, 140, 7, 29, 6, 144, 6, 32, 5, 140, 5, 35, 4, 128, 4, 38, 3, 108, 3, 41, 2, 80, 2, 44, 1, 44, 1, 47, 47, 2256, 46, 96, 45, 2340, 44, 98, 43, 2408, 42, 100, 41, 2460, 40, 102, 39, 2496, 38, 104
OFFSET
1,2
COMMENTS
After n=1, the values of n where a(n)=1 occur in pairs: 7, 9; 43, 45; 207, 209; 943, 945; 4255, 4257; 19159, 19161; 86227,86229; 388035, 388037; 1746171, 1746173; 7857783, 7857785; 35360035, 35360037; etc. [edited by Jon E. Schoenfield, Dec 11 2014]
This occurs only when avoiding zeros and negative numbers form operations and also with four operation sequences [+, -, *, /]; [-, *, /, +]; [*, /, +, -] & [/, +, -, *] among total 24 permutation ones.
LINKS
Kival Ngaokrajang, Scatter plot in log-log scale for n = 1..10^5, Centipede-like pattern.
FORMULA
a(1) = 1, for n >= 2; if (n - (4 * (round(n/4) - 1)) = 2, a(n) = a(n - 1) + n; if (n - (4 * (round(n/4) - 1)) = 3, a(n) = abs(a(n - 1) - n), if a(n - 1) = n, a(n) = n; if (n - (4 * (round(n/4) - 1)) = 4, a(n) = a(n-1) * n; if (n - (4 * (round(n/4) - 1)) = 5, a(n) = round(a(n - 1) / n).
EXAMPLE
a(2) = a(1) + 2 = 3
a(3) = a(2) - 3 = 0, a(3) = n = 3
a(4) = a(3) * 4 = 12
a(5) = a(4) / 5 = round(12/5) = 2
a(6) = a(5) + 6 = 8,...
MAPLE
a:= proc(n) option remember; `if`(n<2, n,
[(x, y)->round(x/y), (x, y)->x+y,
(x, y)->`if`(x-y=0, y, abs(x-y)), (x, y)->x*y]
[1+irem(n-1, 4)](a(n-1), n))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 17 2013
MATHEMATICA
a[n_] := a[n] = If[n==1, 1, With[{k = Mod[n, 4]}, Switch[k, 0, a[n-1] n, 1, Round[a[n-1]/n], 2, a[n-1]+n, 3, If[a[n-1]==n, n, Abs[a[n-1]-n]]]]];
Array[a, 100] (* Jean-François Alcover, Mar 15 2021 *)
PROG
(Small Basic)
a[1]=1
For n=2 To 100
nn = math.Remainder(n, 4)
If nn = 2 Then ' operation +
a[n]=a[n-1]+n
Else
EndIf
If nn = 3 Then ' operation -
If a[n-1] = n Then
a[n]=n
Goto OUT
Else
EndIf
a[n]=Math.Abs(a[n-1]-n)
Else
EndIf
OUT:
If nn=0 Then ' operation *
a[n]=a[n-1]*n
Else
EndIf
If nn=1 Then ' operation /
a[n]=math.Round(a[n-1]/n)
Else
EndIf
EndFor
For j = 1 to 100
TextWindow.Write(j+" ")
TextWindow.Write(a[j])
TextWindow.WriteLine(" ")
EndFor
CROSSREFS
Sequence in context: A352582 A078225 A244247 * A163372 A349922 A066437
KEYWORD
nonn,look
AUTHOR
Kival Ngaokrajang, Feb 05 2013
STATUS
approved