login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078760
Combinations of a partition: number of ways to label a partition (of size n) with numbers 1 to n.
20
1, 1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720, 1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040, 1, 8, 28, 56, 56, 168, 336, 70, 280, 420, 840, 1680, 560, 1120, 1680, 3360, 6720, 2520
OFFSET
0,4
COMMENTS
This is a function of the individual partitions of an integer. The number of values in each line is given by A000041; thus lines 0 to 5 of the sequence are (1), (1), (1,2), (1,3,6), (1,4,6,12,24). The partitions in each line are ordered with the largest part sizes first, so the line 4 indices are [4], [3,1], [2,2], [2,1,1] and [1,1,1,1]. Note that exponents are often used to represent repeated values in a partition, so the last index could instead be written [1^4]. The combination function (sequence A007318) C(n,m) = C([m,n-m]).
This sequence is also the sequence of multinomial coefficients for partitions ordered lexicographically, matching partition sequence A080577. This is different ordering than in sequence A036038 of multinomial coefficients. - Sergei Viznyuk, Mar 15 2012
FORMULA
C([<a(i)>]) = (Sum a(i))! / Product a(i) !.
T(n,k) = A008480(A063008(n,k)). - Andrew Howroyd, Mar 25 2020
EXAMPLE
The irregular table starts:
[0] {1},
[1] {1},
[2] {1, 2},
[3] {1, 3, 6},
[4] {1, 4, 6, 12, 24},
[5] {1, 5, 10, 20, 30, 60, 120},
[6] {1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720}
.
C([2,1]) = 3 for the labelings ({1,2},{3}), ({1,3},{2}) and ({2,3},{2}).
MAPLE
g:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])):
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> g(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
MATHEMATICA
Flatten[Table[Apply[Multinomial, IntegerPartitions[i], {1}], {i, 0, 25}] (* T. D. Noe, Oct 14 2007 *)
Flatten[ Multinomial @@@ IntegerPartitions @ # & /@ Range[ 0, 8]] (* Michael Somos, Feb 05 2011 *)
g[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times@@(ee!)];
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i] & /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
row[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}] & /@ b[n, n];
T[n_] := g /@ row[n];
T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
PROG
(PARI)
C(sig)={vecsum(sig)!/vecprod(apply(k->k!, sig))}
Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
{ for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
CROSSREFS
Different from A036038.
Sequence in context: A171999 A036038 A210237 * A348113 A103280 A046899
KEYWORD
nice,easy,nonn,tabf,look
AUTHOR
STATUS
approved