login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103280
Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].
1
1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
OFFSET
0,3
COMMENTS
Consider the matrix M = [1,1,1;1,N,1;1,1,1];
Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,2] is equivalent to the recursion a(1) = 1, a(2) = N+2, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
0
1
N + 2
N^2 + 2*N + 6
N^3 + 2*N^2 + 8*N + 16
N^4 + 2*N^3 + 10*N^2 + 24*N + 44
N^5 + 2*N^4 + 12*N^3 + 32*N^2 + 76*N + 120
N^6 + 2*N^5 + 14*N^4 + 40*N^3 + 112*N^2 + 232*N + 328
N^7 + 2*N^6 + 16*N^5 + 48*N^4 + 152*N^3 + 368*N^2 + 704*N + 896
N^8 + 2*N^7 + 18*N^6 + 56*N^5 + 196*N^4 + 528*N^3 + 1200*N^2 + 2112*N + 2448
etc.
FORMULA
T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).
EXAMPLE
Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
PROG
(PARI) T12(N, n) = if(n==1, 1, if(n==2, N+2, (N+2)*T12(N, n-1)-(2*N-2)*T12(N, n-2)))
for(k=0, 10, print1(k, ": "); for(i=1, 10, print1(T12(k, i), ", ")); print())
CROSSREFS
Cf. A103279 (for (M^n)[1, 1]), A002605 (for N=0), A000244 (for N=1), A007070 (for N=2), A002450 (for N=3), A030192 (for N=4), A152268 (for N=5), A006131 (for N=-1), A000400 (bisection for N=-2), A015443 (for N=-3), A083102 (for N=-4).
Sequence in context: A210237 A078760 A348113 * A046899 A309220 A225632
KEYWORD
nonn,tabl,easy
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005
STATUS
approved