OFFSET
0,3
COMMENTS
Consider the matrix M = [1,1,1;1,N,1;1,1,1]; Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,1] is equivalent to the recursion a(1) = 1, a(2) = 3, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
1,
3,
N + 8,
N^2 + 4*N + 22,
N^3 + 4*N^2 + 16*N + 60,
N^4 + 4*N^3 + 18*N^2 + 56*N + 164,
N^5 + 4*N^4 + 20*N^3 + 68*N^2 + 188*N + 448,
N^6 + 4*N^5 + 22*N^4 + 80*N^3 + 248*N^2 + 608*N + 1224,
N^7 + 4*N^6 + 24*N^5 + 92*N^4 + 312*N^3 + 864*N^2 + 1920*N + 3344,
N^8 + 4*N^7 + 26*N^6 + 104*N^5 + 380*N^4 + 1152*N^3 + 2928*N^2 + 5952*N + 9136,
etc.
FORMULA
T(N, 1)=1, T(N, 2)=3, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).
EXAMPLE
Array begins:
1,3,8,22,60,164,448,1224,3344,9136,...
1,3,9,27,81,243,729,2187,6561,19683,...
1,3,10,34,116,396,1352,4616,15760,53808,...
1,3,11,43,171,683,2731,10923,43691,174763,...
1,3,12,54,252,1188,5616,26568,125712,594864,...
...
PROG
(PARI) T11(N, n) = if(n==1, 1, if(n==2, 3, (N+2)*r1(N, n-1)-(2*N-2)*r1(N, n-2))) for(k=0, 10, print1(k, ": "); for(i=1, 10, print1(T11(k, i), ", ")); print())
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005
STATUS
approved