The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309220 Square array A read by antidiagonals: the columns are given by A(n,1)=1, A(n,2)=n+1, A(n,3) = n^2+2n+3, A(n,4) = n^3+3*n^2+6*n+4, A(n,5) = n^4+4*n^3+10*n^2+12*n+7, ..., whose coefficients are given by A104509 (see also A118981). 4
 1, 1, 2, 1, 3, 6, 1, 4, 11, 14, 1, 5, 18, 36, 34, 1, 6, 27, 76, 119, 82, 1, 7, 38, 140, 322, 393, 198, 1, 8, 51, 234, 727, 1364, 1298, 478, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 1, 11, 102, 756, 4354, 18557 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS As pointed out by Peter Munn, A117938 gives the same triangle, except that it has an additional diagonal at the right. - N. J. A. Sloane, Aug 13 2019 LINKS EXAMPLE The first few antidiagonals are: 1, 1,2, 1,3,6, 1,4,11,14, 1,5,18,36,34, 1,6,27,76,119,82, 1,7,38,140,322,393,198, ... The first nine rows of A are 1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ... 1, 3, 11, 36, 119, 393, 1298, 4287, 14159, 46764, 154451, 510117, ... 1, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, ... 1, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, ... 1, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, 12813606, 78960998, 486579594, ... 1, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, ... 1, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, ... 1, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, ... 1, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, ... MAPLE M := 12; A:=Array(1..2*M, 1..2*M, 0): for i from 1 to M do A[i, 1]:=1; od: S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): # this is g.f. for A104509 for n from 1 to M do R2 := expand(coeff(S, x, n)); R3 := [seq(abs(coeff(R2, y, n-i)), i=0..n)]; f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): # this is the formula for the (n+1)-st column s1 := [seq(f(i), i=1..M)]; for i from 1 to M do A[i, n+1]:=s1[i]; od: od: for i from 1 to M do lprint([seq(A[i, j], j=1..M)]); od: # alternative by R. J. Mathar, Aug 13 2019 : A104509 := proc(n, k)     (1+x^2)/(1-x-x^2+x*y) ;     coeftayl(%, x=0, n) ;     coeftayl(%, y=0, k) ; end proc: A309220 := proc(n::integer, k::integer)     local x;     add( abs(A104509(k-1, i))*x^i, i=0..k-1) ;     subs(x=n, %) ; end proc: seq( seq(A309220(d-k, k), k=1..d-1), d=2..13) ; CROSSREFS Cf. A104509, A117938, A118980, A118981, A099425 (top row), A006497 (essentially the 2nd row), A014448 (essentially the 3rd row), A087130 (essentially the 4th row). Sequence in context: A078760 A103280 A046899 * A225632 A035206 A210238 Adjacent sequences:  A309217 A309218 A309219 * A309221 A309222 A309223 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Aug 12 2019, based on R. J. Mathar's 2011 analysis of A118980. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 17:41 EDT 2021. Contains 346346 sequences. (Running on oeis4.)