login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099425
Expansion of (1+x^2)/(1-2*x-x^2).
6
1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, 1331714, 3215042, 7761798, 18738638, 45239074, 109216786, 263672646, 636562078, 1536796802, 3710155682, 8957108166, 21624372014, 52205852194, 126036076402, 304278004998
OFFSET
0,2
COMMENTS
Binomial transform of A094024(n+1).
a(n) is the number of matchings of the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added. Example: a(3)=14 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following 14 matchings: the empty set, the six singletons containing one of the edges, {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc}, {Bb,Cc} and {Aa,Bb,Cc}. Row sums of A102413. - Emeric Deutsch, Jan 07 2005
Apart from first term, same as A002203. - Peter Shor, May 12 2005
Equals the INVERT transform of integers with repeats. Example: a(4) = 34 = (1, 1, 2, 6, 14) dot (5, 3, 3, 1, 1) = (5 + 3 + 6 + 6 + 14) = 34.
FORMULA
a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - 0^n see silver mean (A014176).
a(n) = Sum_{k=0..n} A000129(n+1-k)*C(1, k/2)*(1+(-1)^k)/2.
a(n) = 2*A001333(n) - 0^n.
a(n) = round((1+sqrt(2))^n). - Bruno Berselli, Feb 04 2013
G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013
a(n) = A000129(n+1) + A000129(n-1). - Vladimir Kruchinin, Apr 19 2024
MAPLE
a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]-0^n:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 26 2018
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1-2x-x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 1}, {1, 2, 6}, 40] (* Harvey P. Dale, Mar 23 2020 *)
PROG
(Haskell)
a099425 = sum . a102413_row -- Reinhard Zumkeller, Apr 15 2014
CROSSREFS
Cf. A014176 (silver mean).
Sequence in context: A208902 A018016 A182644 * A186523 A177790 A307068
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Oct 15 2004
STATUS
approved